Giá trị rủi ro có điều kiện (CVar): Định nghĩa, Cách sử dụng, Công thức
James Chen, CMT là một nhà giao dịch lão luyện, cố vấn đầu tư và chiến lược gia thị trường toàn cầu. Ông là tác giả của các cuốn sách về phân tích kỹ thuật và giao dịch
Giá trị rủi ro có điều kiện (CVar): Định nghĩa, Cách sử dụng, Công thức
James Chen, CMT là một nhà giao dịch lão luyện, cố vấn đầu tư và chiến lược gia thị trường toàn cầu. Ông là tác giả của các cuốn sách về phân tích kỹ thuật và giao dịch ngoại hối do John Wiley and Sons xuất bản và từng là chuyên gia khách mời trên CNBC, BloombergTV, Forbes và Reuters cùng các phương tiện truyền thông tài chính khác.
Giá trị chịu rủi ro có điều kiện (CVaR), còn được gọi là mức thâm hụt dự kiến, là thước đo đánh giá rủi ro giúp định lượng lượng rủi ro đuôi mà một danh mục đầu tư có. CVaR được tính bằng cách lấy trung bình trọng số của các khoản lỗ “cực đoan” ở phần cuối của phân phối lợi nhuận có thể, ngoài điểm cắt giá trị chịu rủi ro (VaR). Giá trị rủi ro có điều kiện được sử dụng trong tối ưu hóa danh mục đầu tư để quản lý rủi ro hiệu quả.
Hiểu giá trị có điều kiện chịu rủi ro (CVaR)
Nói chung, nếu một khoản đầu tư cho thấy sự ổn định theo thời gian, thì giá trị chịu rủi ro có thể đủ để quản lý rủi ro trong danh mục đầu tư có khoản đầu tư đó. Tuy nhiên, khoản đầu tư càng kém ổn định thì khả năng VaR không đưa ra bức tranh đầy đủ về rủi ro càng cao, vì nó không quan tâm đến bất cứ điều gì vượt quá ngưỡng của chính nó.
Giá trị có điều kiện chịu rủi ro (CVaR) cố gắng giải quyết những thiếu sót của mô hình VaR, đây là một kỹ thuật thống kê được sử dụng để đo lường mức độ rủi ro tài chính trong một công ty hoặc danh mục đầu tư trong một khung thời gian cụ thể. Trong khi VaR thể hiện tổn thất trong trường hợp xấu nhất liên quan đến xác suất và khoảng thời gian, thì CVaR là tổn thất dự kiến nếu ngưỡng trường hợp xấu nhất đó bị vượt qua. Nói cách khác, CVaR định lượng tổn thất dự kiến xảy ra ngoài điểm dừng VaR.
Công thức Giá trị chịu rủi ro có điều kiện (CVaR)
Vì các giá trị CVaR bắt nguồn từ chính việc tính toán VaR, nên các giả định mà VaR dựa vào, chẳng hạn như hình thức phân phối lợi nhuận, mức giới hạn được sử dụng, tính tuần hoàn của dữ liệu và các giả định về sự biến động ngẫu nhiên, tất cả sẽ ảnh hưởng đến giá trị của CVaR. Việc tính toán CVaR rất đơn giản khi VaR đã được tính toán. Đó là mức trung bình của các giá trị nằm ngoài VaR:
C
V
một
r
=
1
1
–
c
∫
–
1
V
một
r
x
P
(
x
)
đ
x
ở đâu:
P
(
x
)
đ
x
=
mật độ xác suất của việc nhận được lợi nhuận với
giá trị ”
x
”
c
=
điểm giới hạn trên phân phối nơi nhà phân tích
đặt các
V
một
r
điểm dừng
started{aligned}Giá trị rủi ro có điều kiện (CVar): Định nghĩa, Cách sử dụng, Công thức
James Chen, CMT là một nhà giao dịch lão luyện, cố vấn đầu tư và chiến lược gia thị trường toàn cầu. Ông là tác giả của các cuốn sách về phân tích kỹ thuật và giao dịch